LLM Engineer

<!DOCTYPE html>

<html lang="en">

<head>

    <meta charset="UTF-8">

    <meta name="viewport" content="width=device-width, initial-scale=1.0">

    <title>LLM Engineering Concepts</title>

    <style>

        body { font-family: Arial, sans-serif; line-height: 1.6; background-color: #f4f4f4; color: #333; padding: 20px; }

        h1, h2 { color: #2c3e50; }

        .container { max-width: 800px; margin: auto; background: white; padding: 20px; border-radius: 10px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); }

        pre { background: #333; color: #f4f4f4; padding: 10px; overflow-x: auto; border-radius: 5px; }

        code { font-family: "Courier New", Courier, monospace; }

        hr { border: 1px solid #ddd; margin: 20px 0; }

    </style>

</head>

<body>


<div class="container">

    <h1>LLM Engineering Concepts</h1>

    <p><strong>Understanding key concepts in Large Language Models (LLMs), Agents, OpenAI, RAG, and Fine-Tuning.</strong></p>

    

    <hr>


    <h2>1. Introduction to LLMs</h2>

    <p>Large Language Models (LLMs) process text using deep learning. Examples include OpenAI's GPT, Claude, LLaMA, and Falcon.</p>

    <pre><code>from openai import OpenAI

client = OpenAI(api_key="your_api_key")


response = client.chat.completions.create(

    model="gpt-4",

    messages=[{"role": "user", "content": "What is LLM?"}]

)

print(response.choices[0].message["content"])</code></pre>


    <hr>


    <h2>2. Retrieval-Augmented Generation (RAG)</h2>

    <p>Enhances LLMs by integrating retrieval mechanisms using vector databases like FAISS, Pinecone, and Weaviate.</p>

    <pre><code>import faiss

import numpy as np


d = 128  # Vector dimension

index = faiss.IndexFlatL2(d)


data = np.random.random((100, d)).astype('float32')

index.add(data)


query = np.random.random((1, d)).astype('float32')

D, I = index.search(query, 5)

print(I)  # Indices of closest vectors</code></pre>


    <hr>


    <h2>3. Fine-Tuning LLMs</h2>

    <p>Fine-tuning is training a pre-trained model on domain-specific data.</p>

    <pre><code>openai api fine_tunes.create -t "training_data.jsonl" -m "gpt-3.5-turbo"</code></pre>


    <hr>


    <h2>4. Agents in LLMs</h2>

    <p>Agents use planning & tool execution to complete tasks. Example using LangChain:</p>

    <pre><code>from langchain.agents import AgentType, initialize_agent

from langchain.llms import OpenAI

from langchain.tools import Tool


tools = [Tool(name="Calculator", func=lambda x: eval(x), description="Performs math operations.")]


agent = initialize_agent(tools, OpenAI(model="gpt-4"), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("What is 10 + 25?")</code></pre>


    <hr>


    <h2>5. Vector Databases & Embeddings</h2>

    <pre><code>from openai import OpenAI


client = OpenAI(api_key="your_api_key")

response = client.embeddings.create(

    input="LLMs are powerful tools.",

    model="text-embedding-ada-002"

)

print(response["data"][0]["embedding"])</code></pre>


    <hr>


    <h2>6. Prompt Engineering</h2>

    <p>Crafting effective prompts for better LLM responses.</p>

    <pre><code>prompt = """

Convert the following sentences to past tense:

1. She runs fast.

2. They eat dinner.

3. I write a book.

"""

response = client.chat.completions.create(model="gpt-4", messages=[{"role": "user", "content": prompt}])

print(response.choices[0].message["content"])</code></pre>


    <hr>


    <h2>7. LLM Deployment & API Integration</h2>

    <pre><code>from transformers import AutoModelForCausalLM, AutoTokenizer


model_name = "meta-llama/Llama-2-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name)


input_text = "Explain quantum computing."

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0]))</code></pre>


    <hr>


    <h2>8. Ethical Considerations & Biases</h2>

    <p>LLMs inherit biases from training data. Example of OpenAI's moderation API:</p>

    <pre><code>response = client.moderations.create(input="Some sensitive content")

print(response["results"][0]["flagged"])  # Returns True if flagged</code></pre>


    <hr>


    <h2>Conclusion</h2>

    <p>Understanding LLMs, RAG, Fine-Tuning, Agents, and Deployment is crucial for AI engineers. These concepts help build powerful AI-driven applications.</p>


</div>


</body>

</html>

Comments

Popular posts from this blog

The LLM Engineer